home *** CD-ROM | disk | FTP | other *** search
- #!/usr/bin/env python
- '''
- Copyright (C) 2005 Aaron Spike, aaron@ekips.org
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- '''
-
- import math, cmath
-
- def rootWrapper(a,b,c,d):
- if a:
- #TODO: find a new cubic solver and put it here
- #return solveCubicMonic(b/a,c/a,d/a)
- return ()
- elif b:
- det=c**2.0-4.0*b*d
- if det:
- return (-c+cmath.sqrt(det))/(2.0*b),(-c-cmath.sqrt(det))/(2.0*b)
- else:
- return -c/(2.0*b),
- elif c:
- return 1.0*(-d/c),
- return ()
-
- def bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))):
- #parametric bezier
- x0=bx0
- y0=by0
- cx=3*(bx1-x0)
- bx=3*(bx2-bx1)-cx
- ax=bx3-x0-cx-bx
- cy=3*(by1-y0)
- by=3*(by2-by1)-cy
- ay=by3-y0-cy-by
-
- return ax,ay,bx,by,cx,cy,x0,y0
- #ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
-
- def linebezierintersect(((lx1,ly1),(lx2,ly2)),((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))):
- #parametric line
- dd=lx1
- cc=lx2-lx1
- bb=ly1
- aa=ly2-ly1
-
- if aa:
- coef1=cc/aa
- coef2=1
- else:
- coef1=1
- coef2=aa/cc
-
- ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
- #cubic intersection coefficients
- a=coef1*ay-coef2*ax
- b=coef1*by-coef2*bx
- c=coef1*cy-coef2*cx
- d=coef1*(y0-bb)-coef2*(x0-dd)
-
- roots = rootWrapper(a,b,c,d)
- retval = []
- for i in roots:
- if type(i) is complex and i.imag==0:
- i = i.real
- if type(i) is not complex and 0<=i<=1:
- retval.append(i)
- return retval
-
- def bezierpointatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t):
- ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
- x=ax*(t**3)+bx*(t**2)+cx*t+x0
- y=ay*(t**3)+by*(t**2)+cy*t+y0
- return x,y
-
- def bezierslopeatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t):
- ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
- dx=3*ax*(t**2)+2*bx*t+cx
- dy=3*ay*(t**2)+2*by*t+cy
- return dx,dy
-
- def beziertatslope(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),(dy,dx)):
- ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
- #quadratic coefficents of slope formula
- if dx:
- slope = 1.0*(dy/dx)
- a=3*ay-3*ax*slope
- b=2*by-2*bx*slope
- c=cy-cx*slope
- elif dy:
- slope = 1.0*(dx/dy)
- a=3*ax-3*ay*slope
- b=2*bx-2*by*slope
- c=cx-cy*slope
- else:
- return []
-
- roots = rootWrapper(0,a,b,c)
- retval = []
- for i in roots:
- if type(i) is complex and i.imag==0:
- i = i.real
- if type(i) is not complex and 0<=i<=1:
- retval.append(i)
- return retval
-
- def tpoint((x1,y1),(x2,y2),t):
- return x1+t*(x2-x1),y1+t*(y2-y1)
- def beziersplitatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t):
- m1=tpoint((bx0,by0),(bx1,by1),t)
- m2=tpoint((bx1,by1),(bx2,by2),t)
- m3=tpoint((bx2,by2),(bx3,by3),t)
- m4=tpoint(m1,m2,t)
- m5=tpoint(m2,m3,t)
- m=tpoint(m4,m5,t)
-
- return ((bx0,by0),m1,m4,m),(m,m5,m3,(bx3,by3))
-
- '''
- Approximating the arc length of a bezier curve
- according to <http://www.cit.gu.edu.au/~anthony/info/graphics/bezier.curves>
-
- if:
- L1 = |P0 P1| +|P1 P2| +|P2 P3|
- L0 = |P0 P3|
- then:
- L = 1/2*L0 + 1/2*L1
- ERR = L1-L0
- ERR approaches 0 as the number of subdivisions (m) increases
- 2^-4m
-
- Reference:
- Jens Gravesen <gravesen@mat.dth.dk>
- "Adaptive subdivision and the length of Bezier curves"
- mat-report no. 1992-10, Mathematical Institute, The Technical
- University of Denmark.
- '''
- def pointdistance((x1,y1),(x2,y2)):
- return math.sqrt(((x2 - x1) ** 2) + ((y2 - y1) ** 2))
- def Gravesen_addifclose(b, len, error = 0.001):
- box = 0
- for i in range(1,4):
- box += pointdistance(b[i-1], b[i])
- chord = pointdistance(b[0], b[3])
- if (box - chord) > error:
- first, second = beziersplitatt(b, 0.5)
- Gravesen_addifclose(first, len, error)
- Gravesen_addifclose(second, len, error)
- else:
- len[0] += (box / 2.0) + (chord / 2.0)
- def bezierlengthGravesen(b, error = 0.001):
- len = [0]
- Gravesen_addifclose(b, len, error)
- return len[0]
-
- # balf = Bezier Arc Length Function
- balfax,balfbx,balfcx,balfay,balfby,balfcy = 0,0,0,0,0,0
- def balf(t):
- retval = (balfax*(t**2) + balfbx*t + balfcx)**2 + (balfay*(t**2) + balfby*t + balfcy)**2
- return math.sqrt(retval)
-
- def Simpson(f, a, b, n_limit, tolerance):
- n = 2
- multiplier = (b - a)/6.0
- endsum = f(a) + f(b)
- interval = (b - a)/2.0
- asum = 0.0
- bsum = f(a + interval)
- est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
- est0 = 2.0 * est1
- #print multiplier, endsum, interval, asum, bsum, est1, est0
- while n < n_limit and abs(est1 - est0) > tolerance:
- n *= 2
- multiplier /= 2.0
- interval /= 2.0
- asum += bsum
- bsum = 0.0
- est0 = est1
- for i in xrange(1, n, 2):
- bsum += f(a + (i * interval))
- est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
- #print multiplier, endsum, interval, asum, bsum, est1, est0
- return est1
-
- def bezierlengthSimpson(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)), tolerance = 0.001):
- global balfax,balfbx,balfcx,balfay,balfby,balfcy
- ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
- balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy
- return Simpson(balf, 0.0, 1.0, 4096, tolerance)
-
- def beziertatlength(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)), l = 0.5, tolerance = 0.001):
- global balfax,balfbx,balfcx,balfay,balfby,balfcy
- ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
- balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy
- t = 1.0
- tdiv = t
- curlen = Simpson(balf, 0.0, t, 4096, tolerance)
- targetlen = l * curlen
- diff = curlen - targetlen
- while abs(diff) > tolerance:
- tdiv /= 2.0
- if diff < 0:
- t += tdiv
- else:
- t -= tdiv
- curlen = Simpson(balf, 0.0, t, 4096, tolerance)
- diff = curlen - targetlen
- return t
-
- #default bezier length method
- bezierlength = bezierlengthSimpson
-
- if __name__ == '__main__':
- import timing
- #print linebezierintersect(((,),(,)),((,),(,),(,),(,)))
- #print linebezierintersect(((0,1),(0,-1)),((-1,0),(-.5,0),(.5,0),(1,0)))
- tol = 0.00000001
- curves = [((0,0),(1,5),(4,5),(5,5)),
- ((0,0),(0,0),(5,0),(10,0)),
- ((0,0),(0,0),(5,1),(10,0)),
- ((-10,0),(0,0),(10,0),(10,10)),
- ((15,10),(0,0),(10,0),(-5,10))]
- '''
- for curve in curves:
- timing.start()
- g = bezierlengthGravesen(curve,tol)
- timing.finish()
- gt = timing.micro()
-
- timing.start()
- s = bezierlengthSimpson(curve,tol)
- timing.finish()
- st = timing.micro()
-
- print g, gt
- print s, st
- '''
- for curve in curves:
- print beziertatlength(curve,0.5)
-